Algebra I

100 Points

Notes.

(a) Justify all your steps. You may use any result proved in class unless you have been asked to prove the same.

(b) \mathbb{N} = natural numbers, \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.

(c) \mathbb{Z}_n = the set of integers modulo n, $(\mathbb{Z}_n)^{\times}$ = the set of those integers in \mathbb{Z}_n that are coprime to n.

- 1. [12 points] Let a, b, c be elements of a group.
 - (i) Suppose abc = 1. Prove or disprove using an example:

1)
$$bca = 1$$
 2) $bac = 1$.

(ii) If a has order m, and $a^n b = ba^n$ for some n coprime to m then prove that ab = ba.

2. [10 points] Find 3 abelian groups G_1, G_2, G_3 of order 27 such that G_i is not isomorphic to G_j for $i \neq j$.

- 3. [16 points] Let G be a group and H, N subgroups with N normal in G.
 - (i) Verify that $NH = \{nh | n \in N, h \in H\}$ is a subgroup of G.
 - (ii) Verify that $H \cap N$ is a normal subgroup of H.
 - (iii) Prove that there is a natural isomorphism $H/(H \cap N) \xrightarrow{\sim} NH/N$.

4. [15 points] Let G be the dihedral group of distance-preserving symmetries of a regular hexagon with vertices, say $v_1, v_2, v_3, v_4, v_5, v_6$.

- (i) Find a generating set for G and list the elements of G as products of multiplicative powers of the elements of these generators.
- (ii) Write each element $g \in G$ from (i) as a permutation in S_6 using the way g permutes the vertices v_i .
- (iii) Let d_{ij} denote a diagonal of the hexagon where d_{ij} is the segment joining v_i to v_j with v_i and v_j non-adjacent. For the obvious natural action of G on the set of all diagonals, find the stabilizer of d_{13} and of d_{14} . (Use the permutation notation of (ii) to list the elements of the stabilizers.)
- 5. [12 points] Prove that any group of order 35 is cyclic.

- 6. [20 points] Consider the elements a = (123) and b = (12345) of $G = S_5$.
 - (i) Calculate the sizes of the conjugacy classes $|C_G(a)|$ and $|C_G(b)|$. (You don't have to list the elements of the classes.)
 - (ii) Find the centralizers $Z_G(a), Z_G(b)$ by writing down their elements.
 - (iii) Let $H = A_5$ denote the alternating group in S_5 . Calculate the centralizers $Z_H(a), Z_H(b)$.
 - (iv) Calculate the sizes of the conjugacy classes $|C_H(a)|$ and $|C_H(b)|$.

7. [15 points] Let G be a group of order 640. Prove that there is a normal subgroup N in G such that $16 \le |N| \le 128$.